Oxalic Acid in Varroa Management

Randy Oliver Revised 14 Jan 2016

(see notes under the slides)

Apidologie 37 (2006) 98–120 © INRA/DIB-AGIB/ EDP Sciences, 2006 DOI: 10.1051/apido:2005063

Review article

Oxalic acid for the control of varroosis in honey bee colonies – a review¹

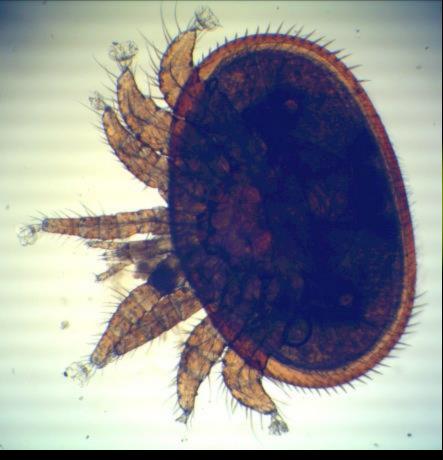
Eva RADEMACHER*, Marika HARZ

Free University of Berlin, Dept. of Biology/Chemistry/Pharmacy, Neurobiology, Königin-Luise-Str. 28–30, 14195 Berlin, Germany

Received 17 February 2005 - revised 17 June 2005 - accepted 26 July 2005

Abstract – The review summarizes research results on the use of oxalic acid as an acaricide in honey bee colonies. Three different treatment techniques (i.e. trickling, evaporation and spraying) have been developed for the application of oxalic acid. Detailed information is given on the efficacy against *Varroa destructor*, tolerability by *Apis mellifera*, protective procedures for the user, residue situation and consumer safety, as well as recommendations for use.

Oxalic has a long history in Europe


Why Oxalic Acid?

Oxalic is the strongest organic acid

pH of Organic Acids - Sorted by increasing pH

Formula	Name	Alternative name	1 mM	10 mM	100 mM
$C_2H_2O_4$	oxalic acid	ethanedioic acid	3.00	2.09	1.31
C ₄ H ₄ O ₄	maleic acid	toxilic acid	3.05	2.21	1.54
C ₄ H ₆ O ₈	dihydroxytartaric acid		3.04	2.20	1.54
$C_6H_6O_6$	cis-aconitic acid		3.05	2.21	1.55
C ₄ H ₄ O ₅	oxaloacetic acid	oxalacetic acid	3.05	2.29	1.68
$C_5H_6O_5$	oxoglutaric acid	ketoglutaric acid	3.09	2.36	1.77
$C_3H_4O_3$	pyruvic acid	acetylformic acid	3.11	2.38	1.79
C ₄ H ₆ O ₃	2-oxobutanoic acid	alpha-ketobutyric acid	3.11	2.38	1.79
C ₆ H ₆ O ₆	trans-aconitic acid		3.14	2.48	1.92
C ₃ H ₄ O ₄	malonic acid	propanedioic acid	3.17	2.50	1.94
C ₈ H ₆ O ₄	phthalic acid	ortho-phthalic acid	3.20	2.55	2.00
C ₄ H ₆ O ₆	L-tartaric acid	racemic acid	3.18	2.55	2.01
C ₇ H ₆ O ₄	gentisic acid	"2,5-dihydroxybenzoic"	3.21	2.56	2.01
C ₇ H ₆ O ₃	salicylic acid	2-hydroxybenzoic acid	3.21	2.57	2.02
C ₄ H ₄ O ₄	fumaric acid	allomaleic acid	3.19	2.57	2.03
C ₄ H ₆ O ₆	DL-tartaric acid	racemic acid	3.19	2.58	2.03
C ₄ H ₆ O ₄	methylmalonic acid		3.23	2.60	2.05
C ₅ H ₆ O ₄	mesaconic acid	dimethylfumaric acid	3.23	2.61	2.06
C ₄ H ₆ O ₆	meso-tartaric acid	racemic acid	3.24	2.62	2.08
C ₆ H ₈ O ₇	citric acid		3.24	2.62	2.08
$C_2H_2O_3$	glyoxilic acid	oxoacetic acid	3.27	2.65	2.11
$C_6H_8O_7$	isocitric acid		3.28	2.69	2.16
$C_4H_6O_5$	malic acid		3.33	2.74	2.21
C ₈ H ₈ O ₃	mandelic acid	phenylglycolic acid	3.34	2.75	2.22
C ₈ H ₆ O ₄	isophthalic acid	meta-phthalic acid	3.33	2.76	2.24
C ₈ H ₆ O ₄	terephthalic acid	para-phthalic acid	3.36	2.79	2.26
C ₃ H ₆ O ₄	glyceric acid		3.38	2.80	2.27
$C_4H_6O_3$	acetoacetic acid	diacetic acid	3.40	2.83	2.30
C ₄ H ₈ O ₃	hydroxybutanoic acid		3.43	2.86	2.33
CH ₂ O ₂	formic acid	methanoic acid	3.47	2.91	2.38
$C_2H_4O_3$	glocolic acid	hydroxyacetic acid	3.50	2.94	2.42
C ₅ H ₆ O ₄	itaconic acid	methylenesuccinic acid	3.50	2.95	2.43
$C_3H_6O_3$	lactic acid	milk acid	3.51	2.96	2.44
C ₈ H ₈ O ₂	toluic acid	ortho-toluic acid	3.53	2.98	2.46
$C_6H_8O_6$	ascorbic acid	vitamin C	3.59	3.04	2.53
C ₅ H ₈ O ₄	methylsuccinic acid		3.62	3.08	2.57
$C_7H_6O_2$	benzoic acid		3.66	3.12	2.60
6446		1 1 1 1 1 1 1	2.65	2.42	2.64

http://www.varroamilbe.ch

There are speculative hypotheses as to why acids kill varroa, but no definitive study.

Beekeeper Gerhard Bruning suspects that OA crystals are absorbed through varroa's sticky tarsal pads.

Safety to Humans

Table I: Oxalic acid content in selected vegetables. These are ballpark numbers, actual content depends on many variables. See note ate the end of the article.

Vegetable	Oxalic acid
	(g/100 g)
Asparagus	0.13
Broccoli	0.19
Lettuce	0.33
Brussels sprouts	0.36
Collards	0.45
Beet leaves	0.61
Spinach	0.97 (0.32-1.26)
Purslane	1.31
Parsley	1.70
•	
Rhubarb	0,3-1.5
leaf	0.59 - 0.72
stalk	0.39 - 0.54

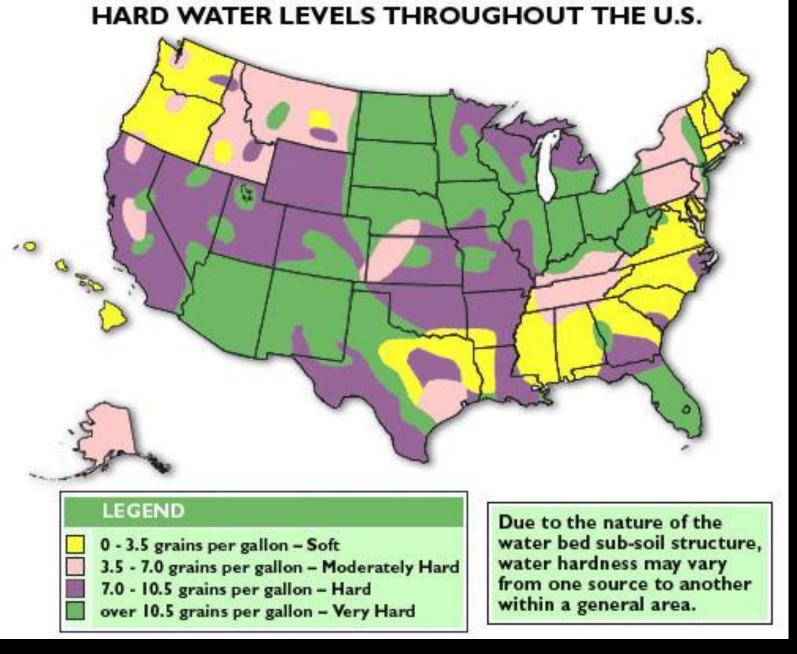
Purchasing Oxalic Acid

Sold as oxalic acid dihydrate

"Wood Bleach"

Serving the industry for more than 30 years

Brushy Mountain Bee Farm


BEST QUALITY | BEST SERVICE | BEST SUPPORT

OO.BEESW Request Catalog Account Login Home Quick Order Bee Educated Search Results for : "oxalic" Online Store Beekeeping Supplies Candle Making Supplies Item# Description lmage Soap and Skin Care Supplies Mead and Wine Supplies Oxalic Acid Shp. Wt. 1 lb. Gifts Monthly Specials 727 Bargain Aisle - Discontinued and Scratch/Dent Featured Products Kit for Oxalic Acid New for 2015 Ship wt. 2 lbs. Cyber Monday In Stock 727K Free Shipping on Most Orders Over \$150* Free Shipping does not apply to Varrocleaner international orders, back ordered Ship wt. 3 lbs. items shipped separately, glass In Stock jars, honey or syrup, LTL shipments will be sent out at no charge but any 7270AV accessorial fees will be billed to customer's account. Other restrictions may apply.

This is the only registered and legal oxalic product!

Mixing Oxalic Syrup

Don't use hard water

ScientificBeekeeping.com

Beekeeping Through the Eyes of a Biologist

Search Go! Home Contact Me

Oxalic Acid Treatment Table

△ Save PDF □ Email & Print

Be sure to read "Oxalic Acid - Questions and Answers" and "The Learning Curve - Part 3" before using oxalic acid. It is critical to apply it correctly, or you risk seriously harming your bees!"

Important Note: the following proportions refer to common oxalic acid dihydrate (wood bleach). If you manage to get your hands on pure laboratory oxalic acid, you must reduce the amount of acid to only 7/10ths of that of the dihydrate!!!!

Also note that if you use hard water, some of the oxalic acid will precipitate out as calcium oxalate, and thus reduce the efficacy (you'll easily see the white precipitate if this is the case.

Oxalic strength →	"Hot" 4.2% w:v	"Medium" 3.2% w:v	"Weak" 2.5% w:v	Notes
OA Crystals	1	0.75	0.6	Oxalic crystals must be measured by weight.
Sucrose	10	10	10	Sugar and water are about the same by weight or volume (1 pint
Dist. Water	10	10	10	of either granulated sugar or water weight 1 lb)
OA Crystals	50a	45a	35a	Makes 1 liter:

Articles By Publication Date

Bee Behavior and Biology

Varroa Management

Bee Nutrition

Colony Health - Diseases,

Viruses, CCD

Pesticide Issues

Nosema ceranae

Almond Pollination

Miscellaneous articles

Research Updates

Beginner's Pages

Please Share

Use the exact dose!


Oxalic strength→	"Hot" 4.2% w:v	"Medium" 3.2% w:v	"Weak" 2.5% w:v	Notes
OA crystals	1	0.75	0.6	Oxalic crystals must be
Sucrose	10	10	10	measured by weight. Sugar and water are about the
Dist. Water	10	10	10	same by weight or volume (1 pint of either granulated
				sugar or water weigh 1 lb)
OA crystals	60g	45g	35g	
Sucrose	600g	600g	600g	Makes 1 liter
Dist. water	600ml	600ml	600ml	Treats about 20 colonies
OA crystals	100g	75g	60g	
Sucrose	1 kg	1 kg	1 kg	Makes 1700ml
Dist. water	1 liter	1 liter	1 liter	Treats about 33 colonies
OA crystals	232g	174g	139g	
Sucrose	5 lb	5 lb	5 lb	Makes 1+ gallon
Dist. water	2.5 qt	2.5 qt	2.5 qt	Treats about 75 colonies
OA crystals	1112g (2lb 7oz)	834g (1lb 13.4oz)	667g (1lb 7.5oz)	
Sucrose	25 lb	25 lb	25 lb	Makes 5 gallons
Dist. water	3 gal	3 gal	3 gal	Treats about 375 colonies

Oxalic acid crystals dissolve more readily in hot water than in sugar solution.

Tip: dissolve the oxalic crystals in the indicated amount of hot (150°F) water <u>before</u> adding the sugar.

After the oxalic crystals are *fully dissolved*, *only then* stir in the sugar.

Storage

Safety

Protect your eyes

Tastes like strong lemonade

Carry baking soda in water to neutralize

Application

1 tsp = 5 mL

Calibrate pump output

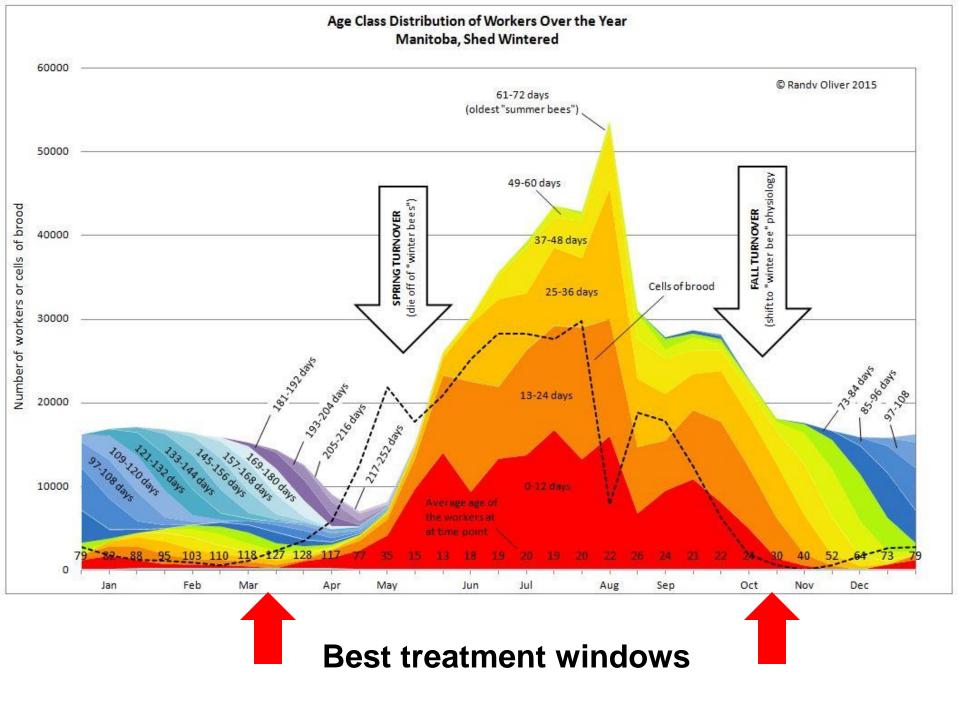
Hit both boxes

Tips:

Fill the garden sprayer only about ¼ full of solution. This leaves a large air space, which minimizes the fluctuation in pressure.

After you've dribbled a yard of hives, measure how much syrup you've applied in total, and divide by the number of hives. This will tell you if you're applying the correct amount.

Timing of Treatment



Oxalic won't kill mites in the brood.

Kill rate of pho	oretic mites			
90	← you can cha	nge this value		
Percent of	Estimated	Estimated	Kill rate of	Percent kill
full	percentage	percentage	phoretic	of total mite
broodnest	of mites in	of mites	mites	population
	the brood	phoretic		
100	70%	30%	90%	27%
90	63%	37%	90%	33%
80	56%	44%	90%	40%
70	49%	51%	90%	46%
60	42%	58%	90%	52%
50	35%	65%	90%	59%
40	28%	72%	90%	65%
30	21%	79%	90%	71%
20	14%	86%	90%	77%
10	7%	93%	90%	84%
0	0%	100%	90%	90%

Note the difference in efficacy, dependent upon how much brood is present.

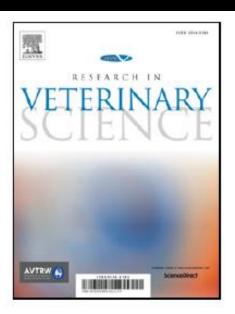
Oxalic gives poor efficacy if there is much brood present, especially if drone brood is present.

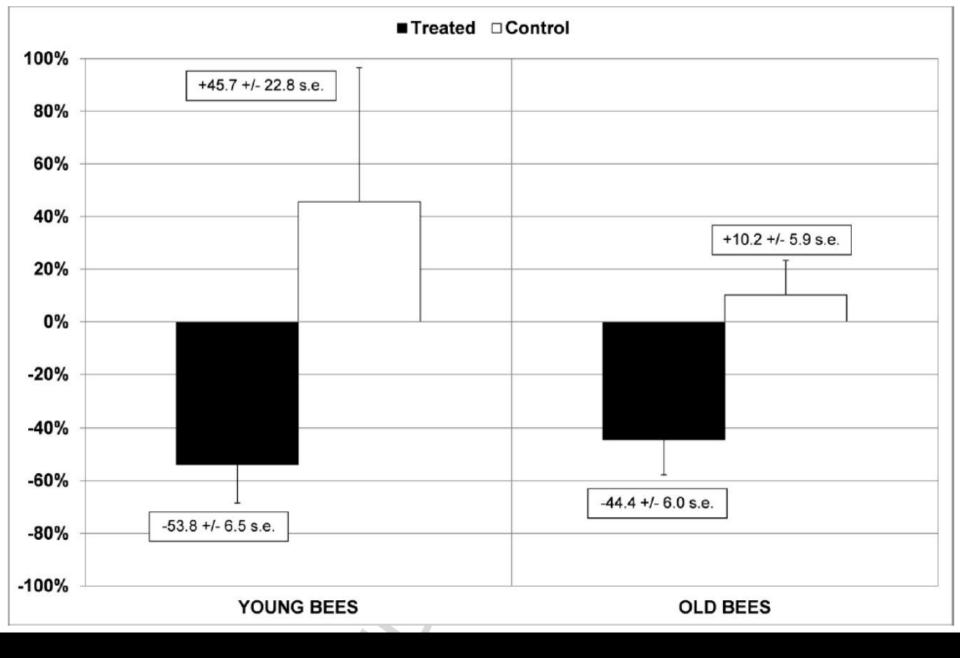
Oxalic acid is, by far, most effective when colonies are broodless.

We use our fall oxalic dribble as a last check on our colonies before winter.

Oxalic drops mites for about 4 days.

Benefit against nosema

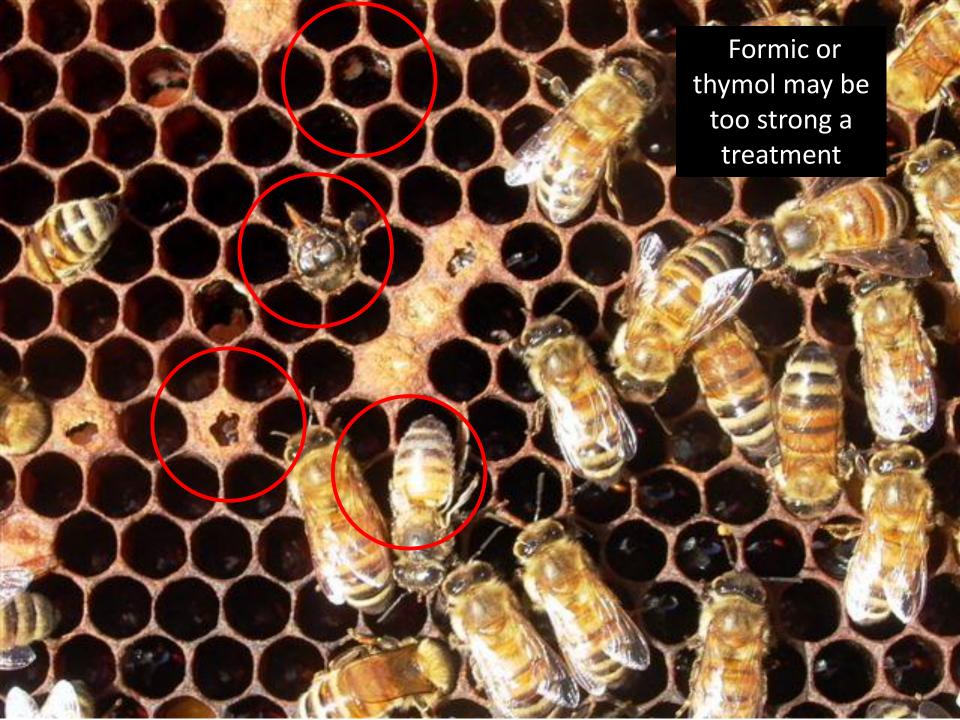

Accepted Manuscript


Effect of oxalic acid on Nosema ceranae infection

Antonio Nanetti, Cristina Rodriguez-García, Aránzazu Meana, Raquel Martín-Hernández, Mariano Higes

PII: S0034-5288(15)30033-3

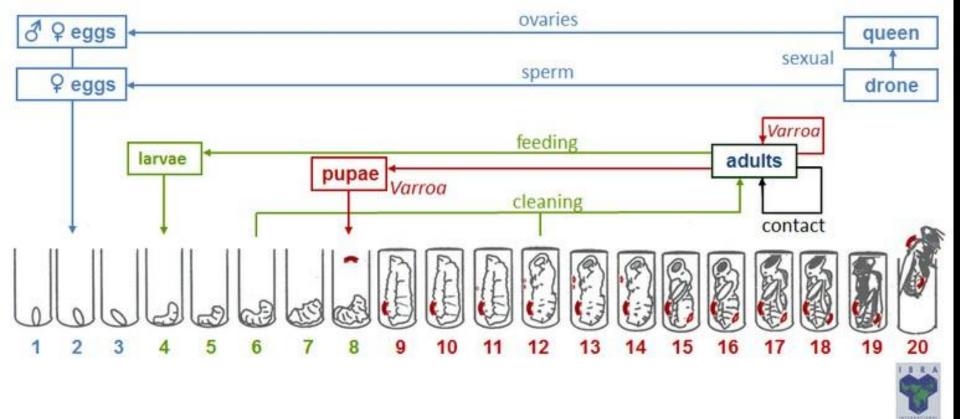
DOI: doi: 10.1016/j.rvsc.2015.08.003



Nosema infection after fall dribble of weak OA, 50mL/hive

Summer Treatment

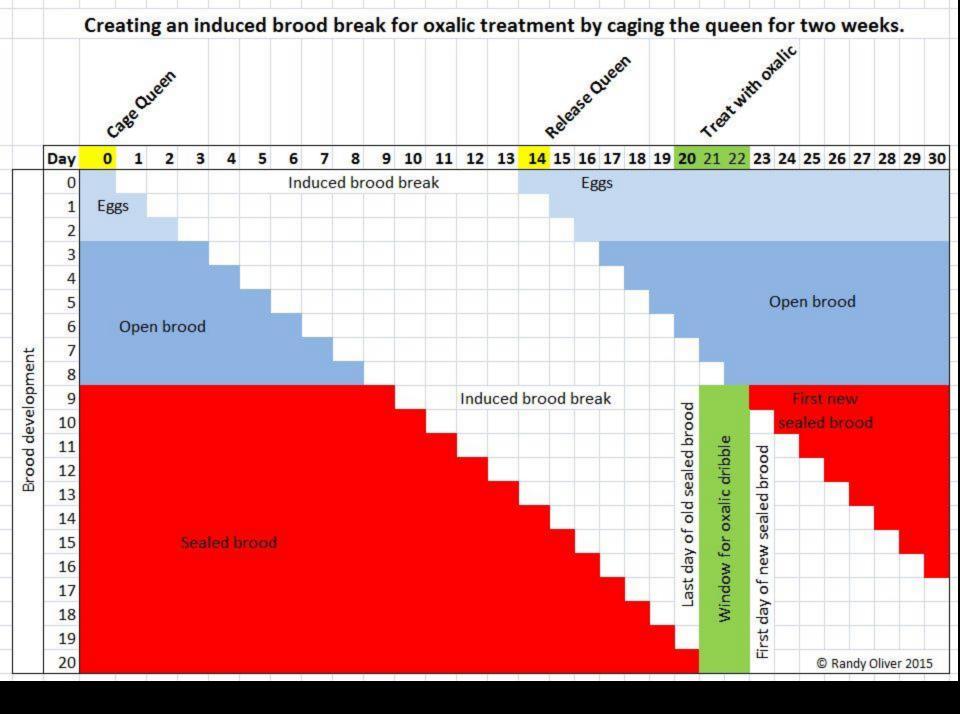
- Can be used on severely mite-stressed colonies to buy time.
- Must be repeated at weekly intervals.



Summer treatment—

3 weekly applications.

Around 50% mite reduction.


Induced Brood Break

Understand the timing!

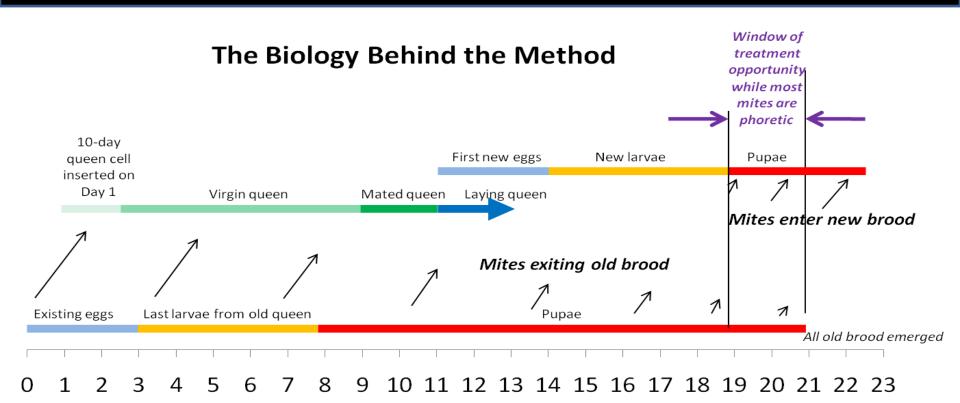
Beekeepers in Italy create an induced brood break during late summer by temporarily caging the queen

Treat walkaway splits at 20 days.

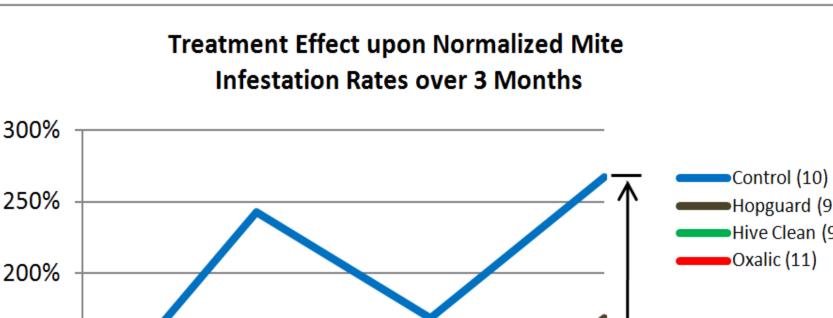
Combine OA with requeening

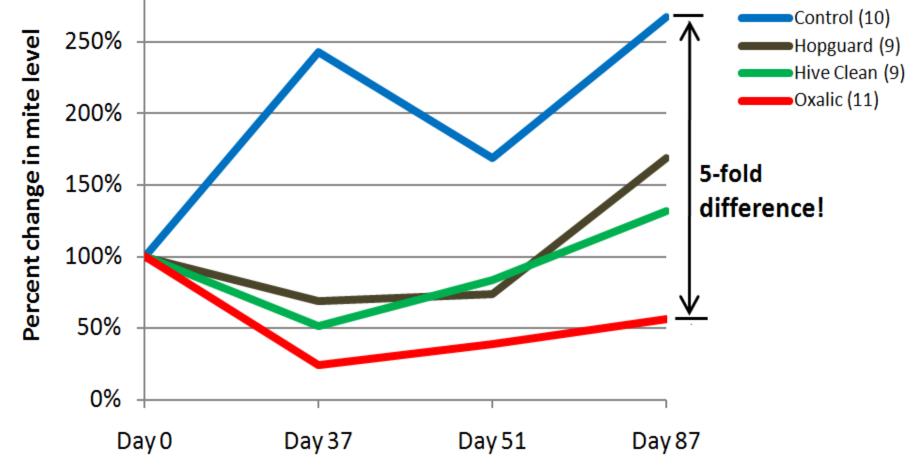
Kill the old queen, insert a queen cell, treat with OA 19 days later.

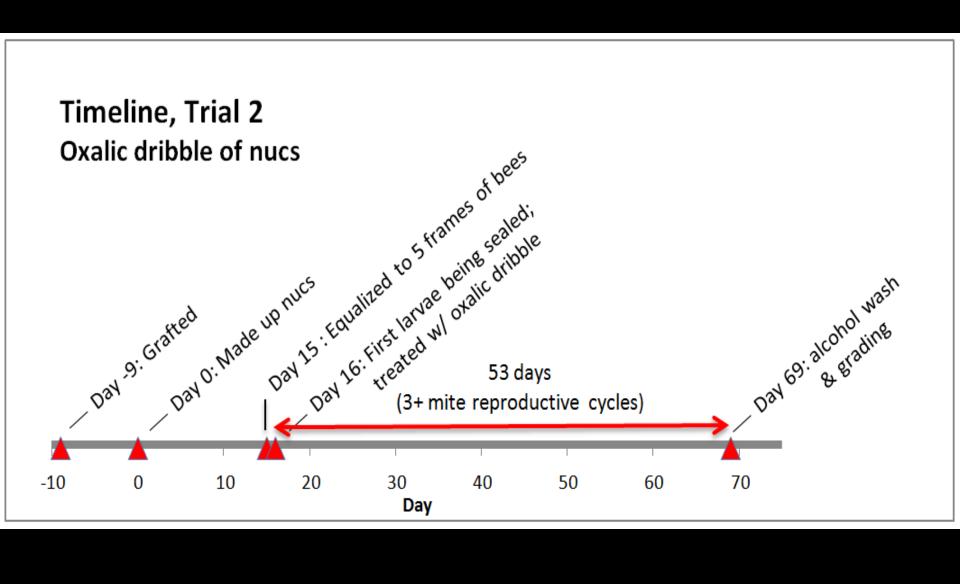
Cage the old queen for 2 weeks, then remove her and introduce a new queen, treat with OA 5 days later.

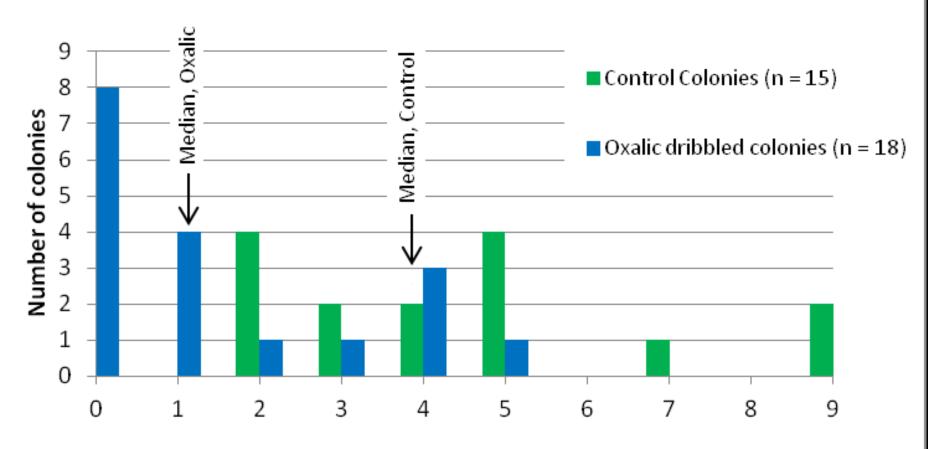

Treatment of Nucs or Packages

A no brainer




Treat package bees or swarms shortly after installation for a "clean start"


Treatment window for nucs

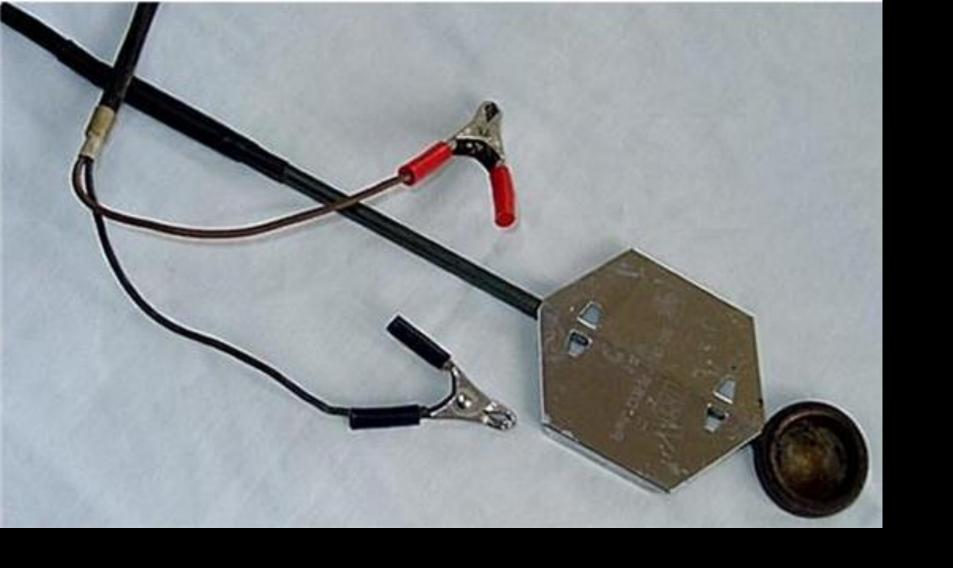

Days from nuc make up

Trial 2: Mite Infestation Rate in Nucs 53 Days Post Treatment

Number of mites per ~300 bee alcohol wash

Trial 2: Colony Strength Control 53 Days Post Treatment Oxalic dribble Median, Median, Control Oxalic 4.5 4 3.5 Number of colonies 3 2.5 2 1.5 1 0.5 0 6.5 8 4.5 5.5 5 6 7 7.5 8.5 9 9.5 10 10.5 11 11.5

Seams filled with bees


Doesn't appear to harm queens

Graft #	Queen(s)	No. cells	Day	Graft date	Sealed	Incubator	Nucs by	Early ripe	Typ mate	Typ eggs	Check/oxalic	Nuc yard(s)
			Fri	3/9	3/13	3/16	3/18	3/19	3/28	3/31	4/6	
			Sat	3/10	3/14	3/17	3/19	3/20	3/29	4/1	4/7	
			Sun	3/11	3/15	3/18	3/20	3/21	3/30	4/2	4/8	
			Mon	3/12	3/16	3/19	3/21	3/22	3/31	4/3	4/9	
			Tue	3/13	3/17	3/20	3/22	3/23	4/1	4/4	4/10	
			Wed	3/14	3/18	3/21	3/23	3/24	4/2	4/5	4/11	
			Th	3/15	3/19	3/22	3/24	3/25	4/3	4/6	4/12	

Create a spreadsheet to keep track of dates

Vaporization (Sublimation)

Useful where winter comes on suddenly.

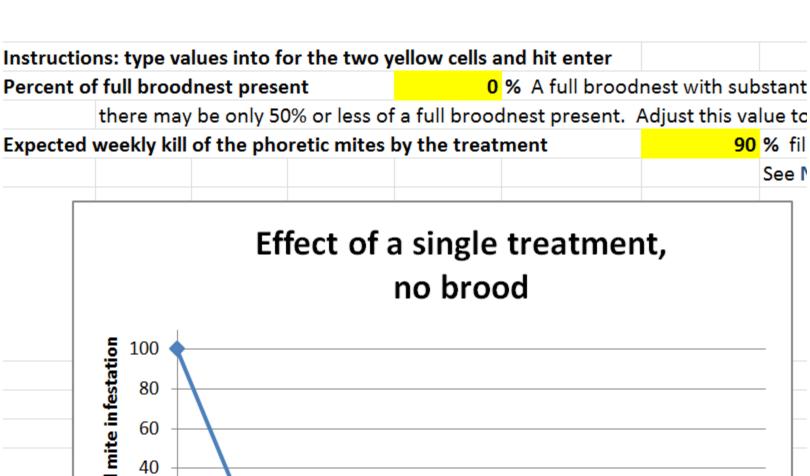
Simple Varrox vaporizer.

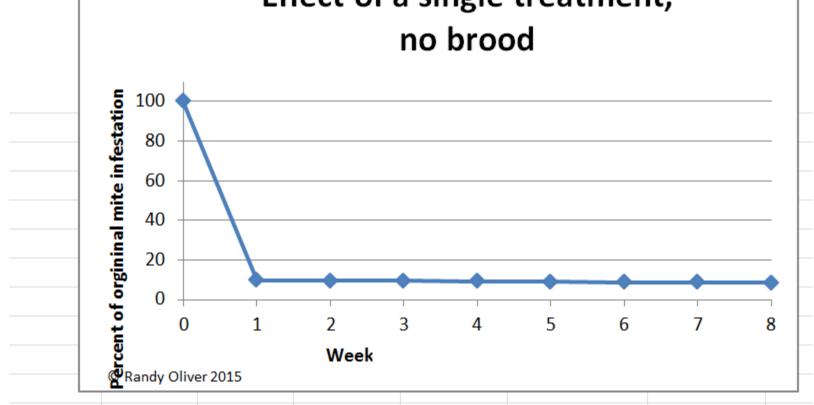
Vaporized oxalic is dangerous! Wear a respirator.

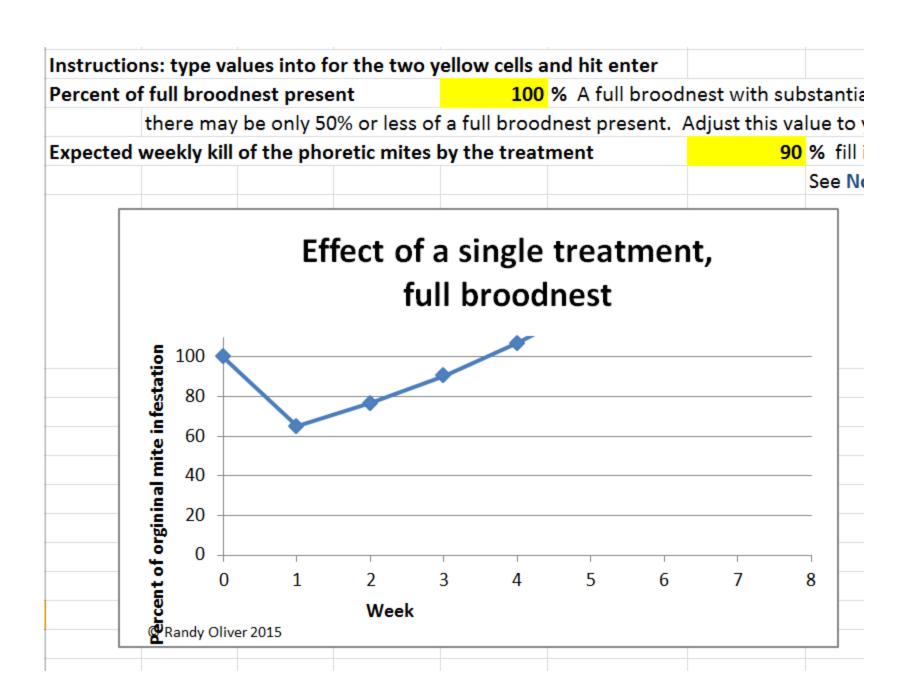
Other issues: Cooked bees Burnt wood or plastic

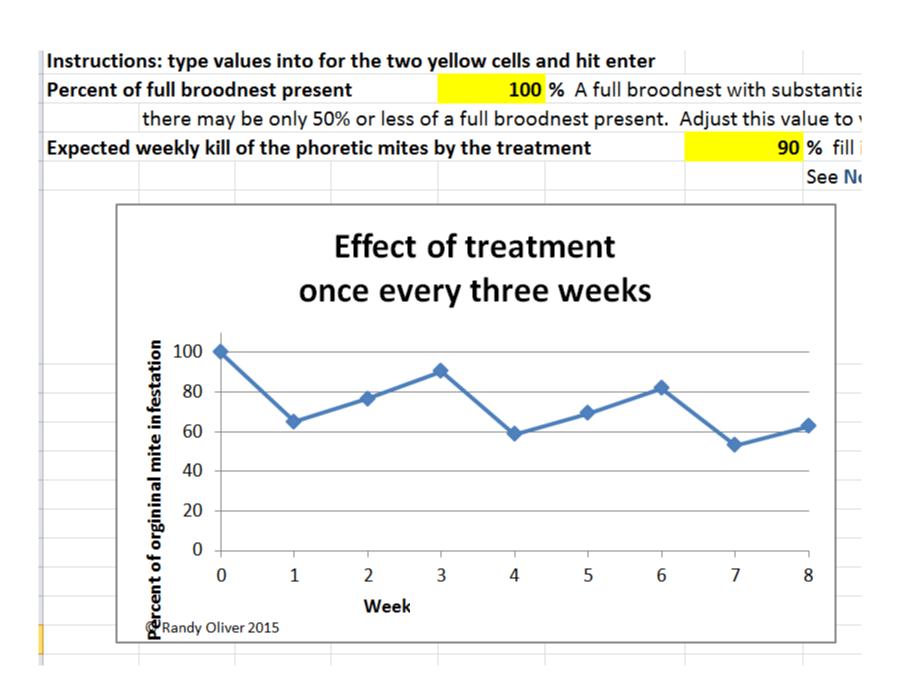
Recently published

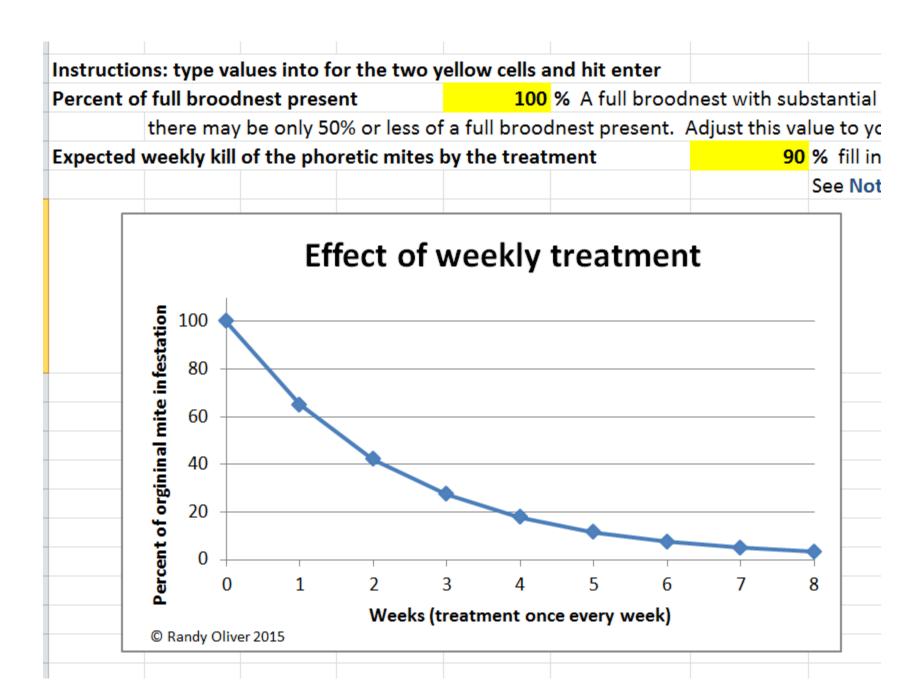
Journal of Apicultural Research, 2015 http://dx.doi.org/10.1080/00218839.2015.1106777


ORIGINAL RESEARCH ARTICLE


Towards integrated control of varroa: 2)comparing application methods and doses of oxalic acid on the mortality of phoretic *Varroa destructor* mites and their honey bee hosts


Hasan Al Toufailia*, Luciano Scandian and Francis L W Ratnieks


Dribble vs. Sublimation


Dribble		Sublimation	
Pros:	High efficacy	Pros:	Perhaps higher efficacy
	Very safe to apply		No opening of the hive
	Quick		Can do in freezing weather
	Little equip needed		Perhaps gentler to the bees
			No syrup mixing
Cons:	Requires opening hive	Cons:	Vapor fog is hazardous
	May be problematic in freezing weather		Requires specialized vaporizer and energy source
	Easier with helper		Problems with hot tip

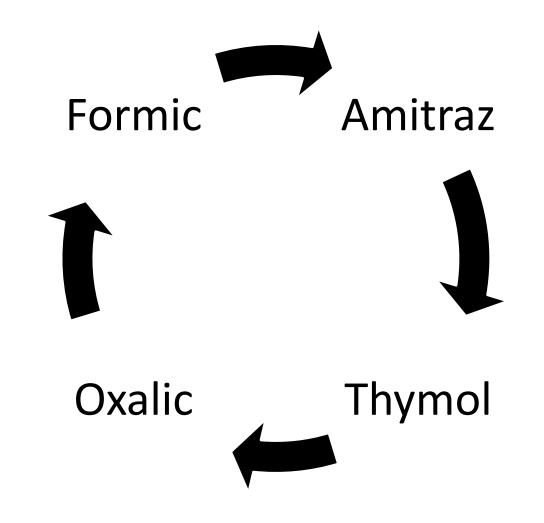
Another application method

Apidologie © INRA, DIB and Springer-Verlag France, 2015

DOI: 10.1007/s13592-015-0405-7

A new formulation of oxalic acid for *Varroa destructor* control applied in *Apis mellifera* colonies in the presence of brood

Matías Maggi^{1,2}, Elian Tourn^{3,4,5}, Pedro Negri^{1,2}, Nicolás Szawarski¹, Alfredo Marconi^{3,4,5}, Liliana Gallez⁶, Sandra Medici^{1,2}, Sergio Ruffinengo⁷, Constanza Brasesco¹, Leonardo De Feudis¹, Silvina Quintana⁸, Diana Sammataro⁹, Martin Eguaras^{1,2}


Oxalic/glycerine on cardboard strips.

A Critical Closing Thought

"The only way to halt the development of resistance to a certain product is by interrupting its use in the control strategy."

Lodesani (2009) Limits of chemotherapy in beekeeping: development of resistance and the problem of residues.

Practice some sort of rotation of treatments

Happy beekeeping!

ScientificBeekeeping.com